Lesson 1 – Make sure a recommender is really needed! Do you have lots of recommendable items? Many diverse customers?… also think Return-on-Investment… a more sophisticated recommender may not deliver a better ROI.
Lesson 2 – Make sure the recommendations make strategic sense. Is the best recommendation for the customer also the best for the business? What is the difference between a good and useful recommendation? Good recommendations .vs. useful recs; Obvious recommendations may not be useful; risky recs may deliver better long-term value (所有系統都是為企業需求而生,切記切記)
Lesson 3 - Choose the right partner! Select the right rec vendor vs hire some #recsys09 students. If you are a big company the best you can do is to organize a contest (為什麼不直接明說 Netflix ?LOL)
Lesson 4 – Forget about cold-start problems (!) …. just be creative. The internet has the data you need (somewhere…) (記住那句老話:We are limited only by our imigination)
Lesson 5 – Get the right balance between data and algorithms. 70% of the success of a #recsys is on the data, the other 30% on the algorithm (這個問題我們已經討論很多次了, Worry about the data before you worry about the algorithm)
Lesson 6 – Finding correlated items is easy but deciding what, how, and when to present to the user is hard… or don't just recommend for the sake of it. Remember user attention is a scarce and valuable resource. Use it wisely! … don't make a recommendations to a customer who is just about to pay for items at the checkout! User interface should get at least 50% of your attention.
Lesson 7 – Don't waste time computing nearest neighbours (use social connections)… just mine the social graph. Might miss useful connections??
Lesson 8 – Don't wait to scale (6, 7, 8, 9 顯然都是實務上的經驗談)
Lesson 9 – Choose the right feedback mechanism. Stars vs thumbs …. the YouTube problem. More research on implicit and other feedback mechanisms is needed. The perfect rating system is no rating system! … focus on the interface. Seems to me this is one of the gaps in current research… algorithms > data > interface
Lesson 10 – Measure Everything! … business control and analytics is a big opportunity here. (不僅要評量預測準不準,企業流程裡每個環節都要有評估機制,這是有真正創業、經營體驗的人的心得)
Keynote Takeaway – Think about application context; Focus on interface as much as algorithms; Be creative with start-up data. … the UI needs to get the lion’s share of the effort (50%) compared to algorithms (5%) , knowledge (20%), analytics (25%)
對於最後的 Takeaway,每個讀者或許都有自己的看法,畢竟要量化各因素在系統開發過程中的比重實在不容易,最後只能是被迫給出一組表達自己“經驗值”的數字。UI 的重要性當然毋庸置疑,只是 UI 為什麼是演算法的十倍?聰明的你(妳),想必有一套自己的想法!
Monday, October 26, 2009
Francisco Martin #RecSys09 Industry Keynote Summary
推薦系統界的年度盛事之一 ACM Recommender System 2009 剛剛落幕(October 22-25),Strands 的創辦人 Francisco J Martin 在會中以業界人士身份受邀發表的演說 (Industry Ketnote) : Top 10 Lessons Learned Developing, Deploying, and Operating Real-World Recommender Systems 中有許多值得大家思考的內容,Neal Lathia (MobBlog) 將 Martin 博士的演說,以推特(Twitter)筆法,整理成十則簡明的摘要:
Subscribe to:
Post Comments (Atom)
如果我的心是一朵蓮花
~ 林徽因 · 馬雁散文集 · 蓮燈 ~ 馬雁 在她的散文《高貴一種,有詩為證》裡,提到「十多年前,還不知道林女士的八卦及成就前,在期刊上讀到別人引用的《蓮燈》」 覺得非常喜歡,比之卞之琳、徐志摩,別說是毫不遜色,簡直是勝出一籌。前面的韻腳和平仄的處理顯然高於戴...
-
我向來不是很關注 Conference 的訊息,但是這學期開學後,一個月內接連聽到好幾個老師談他們對學術會議「 價值 」的看法,促使我反省原先的態度,所以這幾天作了一點功課。我發現下面三個 Conference Ranking 的列表頗有參考價值,抄錄於後,一則是備忘,再則分享給...
-
這是很多年前的舊文了,最近有些網友找到這篇文章,於是有了一些很有意思的對話,我記錄在下面兩篇文章,如果您有興趣,也歡迎看看這些簡短的記錄,批評指教。謝謝。 如何評估推薦系統(二) 記一次推薦系統對話 ----- 任何工作,包括學術研究與商業專案,都必須有衡量成績...
-
最近,有個朋友接了個不大不小( 不是 quick and dirty 的小案,但也不是可以讓供應商穿金戴銀的數字,所以叫做不大不小 )的系統開發案,甲、乙雙方為了文件交付標準,起了不小的爭執。經過協調,最後兩方都同意不用 CMMI 的標準(天曉得什麼是 CMMI 文件標準),改用...
@xlvector寫的 心得也很值得參考!
ReplyDelete